Uniqueness of bridge surfaces for 2-bridge knots

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of bridge surfaces for 2-bridge knots

Any 2-bridge knot in S has a bridge sphere from which any other bridge surface can be obtained by stabilization, meridional stabilization, perturbation and proper isotopy.

متن کامل

The Kauffman Polynomials of 2-bridge Knots

The 2-bridge knots (or links) are a family of knots with bridge number 2. A 2bridge knot (link) has at most 2 components. Except for the knot 85, the first 25 knots in the Rolfsen Knot Table are 2-bridge knots. A 2-bridge knot is also called a rational knot because it can be obtained as the numerator or denominator closure of a rational tangle. The rich mathematical aspects of 2-bridge knots ca...

متن کامل

Chebyshev diagrams for two-bridge knots

We show that every two-bridge knot K of crossing number N admits a polynomial parametrization x = T3(t), y = Tb(t), z = C(t) where Tk(t) are the Chebyshev polynomials and b + degC = 3N . If C(t) = Tc(t) is a Chebyshev polynomial, we call such a knot a harmonic knot. We give the classification of harmonic knots for a ≤ 3. Most results are derived from continued fractions and their matrix represe...

متن کامل

The Classification of Dehn Surgeries on 2-bridge Knots

We will determine whether a given surgery on a 2-bridge knot is reducible, toroidal, Seifert bered, or hyperbolic. In [Th1] Thurston showed that if K is a hyperbolic knot, then all but nitely many surgeries on K are hyperbolic. In particular, for the Figure 8 knot, it was shown that exactly 9 nontrivial surgeries are non-hyperbolic. Let Kp=q be a 2-bridge knot associated to the rational number ...

متن کامل

Stick Numbers of 2-bridge Knots and Links

Negami found an upper bound on the stick number s(K) of a nontrivial knot K in terms of the minimal crossing number c(K) of the knot, which is s(K) ≤ 2c(K). Furthermore, McCabe proved that s(K) ≤ c(K) + 3 for a 2-bridge knot or link, except in the cases of the unlink and the Hopf link. In this paper we construct any 2-bridge knot or link K of at least six crossings by using only c(K) + 2 straig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Proceedings of the Cambridge Philosophical Society

سال: 2008

ISSN: 0305-0041,1469-8064

DOI: 10.1017/s0305004107000977